3.26.31 \(\int \frac {1}{\sqrt [4]{a+b x+c x^2}} \, dx\) [2531]

Optimal. Leaf size=418 \[ \frac {2 (b+2 c x) \sqrt [4]{a+b x+c x^2}}{\sqrt {c} \sqrt {b^2-4 a c} \left (1+\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right )}-\frac {\sqrt {2} \left (b^2-4 a c\right )^{3/4} \sqrt {\frac {(b+2 c x)^2}{\left (b^2-4 a c\right ) \left (1+\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right )^2}} \left (1+\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right ) E\left (2 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt [4]{a+b x+c x^2}}{\sqrt [4]{b^2-4 a c}}\right )|\frac {1}{2}\right )}{c^{3/4} (b+2 c x)}+\frac {\left (b^2-4 a c\right )^{3/4} \sqrt {\frac {(b+2 c x)^2}{\left (b^2-4 a c\right ) \left (1+\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right )^2}} \left (1+\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right ) F\left (2 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt [4]{a+b x+c x^2}}{\sqrt [4]{b^2-4 a c}}\right )|\frac {1}{2}\right )}{\sqrt {2} c^{3/4} (b+2 c x)} \]

[Out]

2*(2*c*x+b)*(c*x^2+b*x+a)^(1/4)/c^(1/2)/(-4*a*c+b^2)^(1/2)/(1+2*c^(1/2)*(c*x^2+b*x+a)^(1/2)/(-4*a*c+b^2)^(1/2)
)+1/2*(-4*a*c+b^2)^(3/4)*(cos(2*arctan(c^(1/4)*(c*x^2+b*x+a)^(1/4)*2^(1/2)/(-4*a*c+b^2)^(1/4)))^2)^(1/2)/cos(2
*arctan(c^(1/4)*(c*x^2+b*x+a)^(1/4)*2^(1/2)/(-4*a*c+b^2)^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*(c*x^2+b*x+a)^
(1/4)*2^(1/2)/(-4*a*c+b^2)^(1/4))),1/2*2^(1/2))*(1+2*c^(1/2)*(c*x^2+b*x+a)^(1/2)/(-4*a*c+b^2)^(1/2))*((2*c*x+b
)^2/(-4*a*c+b^2)/(1+2*c^(1/2)*(c*x^2+b*x+a)^(1/2)/(-4*a*c+b^2)^(1/2))^2)^(1/2)/c^(3/4)/(2*c*x+b)*2^(1/2)-(-4*a
*c+b^2)^(3/4)*(cos(2*arctan(c^(1/4)*(c*x^2+b*x+a)^(1/4)*2^(1/2)/(-4*a*c+b^2)^(1/4)))^2)^(1/2)/cos(2*arctan(c^(
1/4)*(c*x^2+b*x+a)^(1/4)*2^(1/2)/(-4*a*c+b^2)^(1/4)))*EllipticE(sin(2*arctan(c^(1/4)*(c*x^2+b*x+a)^(1/4)*2^(1/
2)/(-4*a*c+b^2)^(1/4))),1/2*2^(1/2))*2^(1/2)*(1+2*c^(1/2)*(c*x^2+b*x+a)^(1/2)/(-4*a*c+b^2)^(1/2))*((2*c*x+b)^2
/(-4*a*c+b^2)/(1+2*c^(1/2)*(c*x^2+b*x+a)^(1/2)/(-4*a*c+b^2)^(1/2))^2)^(1/2)/c^(3/4)/(2*c*x+b)

________________________________________________________________________________________

Rubi [A]
time = 0.22, antiderivative size = 418, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {637, 311, 226, 1210} \begin {gather*} \frac {\left (b^2-4 a c\right )^{3/4} \sqrt {\frac {(b+2 c x)^2}{\left (b^2-4 a c\right ) \left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}+1\right )^2}} \left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}+1\right ) F\left (2 \text {ArcTan}\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt [4]{c x^2+b x+a}}{\sqrt [4]{b^2-4 a c}}\right )|\frac {1}{2}\right )}{\sqrt {2} c^{3/4} (b+2 c x)}-\frac {\sqrt {2} \left (b^2-4 a c\right )^{3/4} \sqrt {\frac {(b+2 c x)^2}{\left (b^2-4 a c\right ) \left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}+1\right )^2}} \left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}+1\right ) E\left (2 \text {ArcTan}\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt [4]{c x^2+b x+a}}{\sqrt [4]{b^2-4 a c}}\right )|\frac {1}{2}\right )}{c^{3/4} (b+2 c x)}+\frac {2 (b+2 c x) \sqrt [4]{a+b x+c x^2}}{\sqrt {c} \sqrt {b^2-4 a c} \left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}+1\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x + c*x^2)^(-1/4),x]

[Out]

(2*(b + 2*c*x)*(a + b*x + c*x^2)^(1/4))/(Sqrt[c]*Sqrt[b^2 - 4*a*c]*(1 + (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt
[b^2 - 4*a*c])) - (Sqrt[2]*(b^2 - 4*a*c)^(3/4)*Sqrt[(b + 2*c*x)^2/((b^2 - 4*a*c)*(1 + (2*Sqrt[c]*Sqrt[a + b*x
+ c*x^2])/Sqrt[b^2 - 4*a*c])^2)]*(1 + (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c])*EllipticE[2*ArcTan[
(Sqrt[2]*c^(1/4)*(a + b*x + c*x^2)^(1/4))/(b^2 - 4*a*c)^(1/4)], 1/2])/(c^(3/4)*(b + 2*c*x)) + ((b^2 - 4*a*c)^(
3/4)*Sqrt[(b + 2*c*x)^2/((b^2 - 4*a*c)*(1 + (2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c])^2)]*(1 + (2*S
qrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c])*EllipticF[2*ArcTan[(Sqrt[2]*c^(1/4)*(a + b*x + c*x^2)^(1/4))/
(b^2 - 4*a*c)^(1/4)], 1/2])/(Sqrt[2]*c^(3/4)*(b + 2*c*x))

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 311

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 637

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{d = Denominator[p]}, Dist[d*(Sqrt[(b + 2*c*x)
^2]/(b + 2*c*x)), Subst[Int[x^(d*(p + 1) - 1)/Sqrt[b^2 - 4*a*c + 4*c*x^d], x], x, (a + b*x + c*x^2)^(1/d)], x]
 /; 3 <= d <= 4] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && RationalQ[p]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt [4]{a+b x+c x^2}} \, dx &=\frac {\left (4 \sqrt {(b+2 c x)^2}\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {b^2-4 a c+4 c x^4}} \, dx,x,\sqrt [4]{a+b x+c x^2}\right )}{b+2 c x}\\ &=\frac {\left (2 \sqrt {b^2-4 a c} \sqrt {(b+2 c x)^2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {b^2-4 a c+4 c x^4}} \, dx,x,\sqrt [4]{a+b x+c x^2}\right )}{\sqrt {c} (b+2 c x)}-\frac {\left (2 \sqrt {b^2-4 a c} \sqrt {(b+2 c x)^2}\right ) \text {Subst}\left (\int \frac {1-\frac {2 \sqrt {c} x^2}{\sqrt {b^2-4 a c}}}{\sqrt {b^2-4 a c+4 c x^4}} \, dx,x,\sqrt [4]{a+b x+c x^2}\right )}{\sqrt {c} (b+2 c x)}\\ &=\frac {2 (b+2 c x) \sqrt [4]{a+b x+c x^2}}{\sqrt {c} \sqrt {b^2-4 a c} \left (1+\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right )}-\frac {\sqrt {2} \left (b^2-4 a c\right )^{3/4} \sqrt {\frac {(b+2 c x)^2}{\left (b^2-4 a c\right ) \left (1+\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right )^2}} \left (1+\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right ) E\left (2 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt [4]{a+b x+c x^2}}{\sqrt [4]{b^2-4 a c}}\right )|\frac {1}{2}\right )}{c^{3/4} (b+2 c x)}+\frac {\left (b^2-4 a c\right )^{3/4} \sqrt {\frac {(b+2 c x)^2}{\left (b^2-4 a c\right ) \left (1+\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right )^2}} \left (1+\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right ) F\left (2 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt [4]{a+b x+c x^2}}{\sqrt [4]{b^2-4 a c}}\right )|\frac {1}{2}\right )}{\sqrt {2} c^{3/4} (b+2 c x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.02, size = 84, normalized size = 0.20 \begin {gather*} \frac {(b+2 c x) \sqrt [4]{\frac {c (a+x (b+c x))}{-b^2+4 a c}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {3}{2};\frac {(b+2 c x)^2}{b^2-4 a c}\right )}{\sqrt {2} c \sqrt [4]{a+x (b+c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x + c*x^2)^(-1/4),x]

[Out]

((b + 2*c*x)*((c*(a + x*(b + c*x)))/(-b^2 + 4*a*c))^(1/4)*Hypergeometric2F1[1/4, 1/2, 3/2, (b + 2*c*x)^2/(b^2
- 4*a*c)])/(Sqrt[2]*c*(a + x*(b + c*x))^(1/4))

________________________________________________________________________________________

Maple [F]
time = 0.64, size = 0, normalized size = 0.00 \[\int \frac {1}{\left (c \,x^{2}+b x +a \right )^{\frac {1}{4}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x^2+b*x+a)^(1/4),x)

[Out]

int(1/(c*x^2+b*x+a)^(1/4),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^2+b*x+a)^(1/4),x, algorithm="maxima")

[Out]

integrate((c*x^2 + b*x + a)^(-1/4), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^2+b*x+a)^(1/4),x, algorithm="fricas")

[Out]

integral((c*x^2 + b*x + a)^(-1/4), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt [4]{a + b x + c x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x**2+b*x+a)**(1/4),x)

[Out]

Integral((a + b*x + c*x**2)**(-1/4), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^2+b*x+a)^(1/4),x, algorithm="giac")

[Out]

integrate((c*x^2 + b*x + a)^(-1/4), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{{\left (c\,x^2+b\,x+a\right )}^{1/4}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*x + c*x^2)^(1/4),x)

[Out]

int(1/(a + b*x + c*x^2)^(1/4), x)

________________________________________________________________________________________